The clock gene Period1 regulates innate routine behaviour in mice.

نویسندگان

  • Philipp Bechstein
  • Nils-Jörn Rehbach
  • Gowzekan Yuhasingham
  • Christoph Schürmann
  • Melanie Göpfert
  • Manfred Kössl
  • Erik Maronde
چکیده

Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mouse Period1 (mPER1) acts as a circadian adaptor to entrain the oscillator to environmental light/dark cycles by regulating mPER2 protein.

Mouse period1 (mPer1) and mPer2 are mammalian homologs of the Drosophila clock gene period that show robust oscillation in the suprachiasmatic nucleus, the mammalian master clock, and have been implicated as essential components of the core clock mechanism. Gene-targeting studies have demonstrated that mPer2 plays a dominant function in behavioral rhythm generation, although the role of mPer1 h...

متن کامل

GRK2 Fine-Tunes Circadian Clock Speed and Entrainment via Transcriptional and Post-translational Control of PERIOD Proteins.

The pacemaker properties of the suprachiasmatic nucleus (SCN) circadian clock are shaped by mechanisms that influence the expression and behavior of clock proteins. Here, we reveal that G-protein-coupled receptor kinase 2 (GRK2) modulates the period, amplitude, and entrainment characteristics of the SCN. Grk2-deficient mice show phase-dependent alterations in light-induced entrainment, slower r...

متن کامل

Autonomous onset of the circadian clock in the zebrafish embryo.

On the first day of development a circadian clock becomes functional in the zebrafish embryo. How this oscillator is set in motion remains unclear. We demonstrate that zygotic period1 transcription begins independent of light exposure. Pooled embryos maintained in darkness and under constant temperature show elevated non-oscillating levels of period1 expression. Consequently, there is no matern...

متن کامل

The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus

The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well und...

متن کامل

Clock gene dysfunction in patients with obstructive sleep apnoea syndrome.

Clock genes regulate mammalian circadian rhythms, and dysfunction of clock genes can contribute to various disorders. To investigate whether obstructive sleep apnoea syndrome (OSAS) influences clock gene function, the present authors examined Period1 (Per1) mRNA expression in vitro and in vivo. In eight healthy subjects and eight OSAS patients, plasma noradrenaline, serum interleukin (IL)-6, hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 281 1781  شماره 

صفحات  -

تاریخ انتشار 2014